P.J.
0
UT Austin to Lead $58 Million Effort to Study Potential New Energy Source
AUSTIN, Texas — A research team led by The University of Texas at Austin has been awarded approximately $58 million to analyze deposits of frozen methane under the Gulf of Mexico that hold enormous potential to increase the world’s energy supply.
The grant, one of the largest ever awarded to the university, will allow researchers to advance scientific understanding of methane hydrate, a substance found in abundance beneath the ocean floor and under Arctic permafrost.
The Department of Energy is providing $41,270,609, with the remainder funded by industry and the research partners.
In addition to UT Austin’s Institute for Geophysics (UTIG) at the Jackson School of Geosciences, the study includes researchers from The Ohio State University, Columbia University’s Lamont-Doherty Earth Observatory, the Consortium for Ocean Leadership and the U.S. Geological Survey.
"The Department of Energy looks forward to partnering with The University of Texas at Austin and the rest of the project team to plan and execute an outstanding scientific drilling expedition,” said Ray Boswell, program manager at the department's National Energy Technology Laboratory.
Often referred to as “fire and ice” because of its ability to produce a dazzling flame when lit, methane hydrate is an ice-like solid compound that forms in low-temperature and high-pressure environments where molecules of methane, a chief constituent of natural gas, are trapped within a lattice structure of water molecules.
Estimates vary on the amount of energy that could be produced from methane hydrate worldwide, but the potential is huge. In the Gulf of Mexico, where the team will be sampling, there is estimated to be about 7,000 trillion cubic feet (TCF) of methane in sand-dominated reservoirs near the seafloor. That is more than 250 times the amount of natural gas used in the United States in 2013. Hydrates have the potential to contribute to long-term energy security within the United States and abroad. Many large global economies that lack clean and secure energy supplies have potentially enormous hydrate resources.
Please read more from here
UT Austin to Lead $58 Million Effort to Study Potential New Energy Source | News
AUSTIN, Texas — A research team led by The University of Texas at Austin has been awarded approximately $58 million to analyze deposits of frozen methane under the Gulf of Mexico that hold enormous potential to increase the world’s energy supply.
The grant, one of the largest ever awarded to the university, will allow researchers to advance scientific understanding of methane hydrate, a substance found in abundance beneath the ocean floor and under Arctic permafrost.
The Department of Energy is providing $41,270,609, with the remainder funded by industry and the research partners.
In addition to UT Austin’s Institute for Geophysics (UTIG) at the Jackson School of Geosciences, the study includes researchers from The Ohio State University, Columbia University’s Lamont-Doherty Earth Observatory, the Consortium for Ocean Leadership and the U.S. Geological Survey.
"The Department of Energy looks forward to partnering with The University of Texas at Austin and the rest of the project team to plan and execute an outstanding scientific drilling expedition,” said Ray Boswell, program manager at the department's National Energy Technology Laboratory.
Often referred to as “fire and ice” because of its ability to produce a dazzling flame when lit, methane hydrate is an ice-like solid compound that forms in low-temperature and high-pressure environments where molecules of methane, a chief constituent of natural gas, are trapped within a lattice structure of water molecules.
Estimates vary on the amount of energy that could be produced from methane hydrate worldwide, but the potential is huge. In the Gulf of Mexico, where the team will be sampling, there is estimated to be about 7,000 trillion cubic feet (TCF) of methane in sand-dominated reservoirs near the seafloor. That is more than 250 times the amount of natural gas used in the United States in 2013. Hydrates have the potential to contribute to long-term energy security within the United States and abroad. Many large global economies that lack clean and secure energy supplies have potentially enormous hydrate resources.
Please read more from here
UT Austin to Lead $58 Million Effort to Study Potential New Energy Source | News